skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Raghunathan, Anu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Raghunathan, Anu (Ed.)
    Computational pathway design and retro-biosynthetic approaches can facilitate the development of innovative biochemical production routes, biodegradation strategies, and the funneling of multiple precursors into a single bioproduct. However, effective pathway design necessitates a comprehensive understanding of biochemistries, enzyme activities, and thermodynamic feasibility. Herein, we introduce novoStoic2.0, an integrated platform that combines tools for estimating overall stoichiometry, designing de novo synthesis pathways, assessing thermodynamic feasibility, and selecting enzymes. novoStoic2.0 offers a unified web-based interface as a part of the AlphaSynthesis platform (http://novostoic.platform.moleculemaker.org/) tailored for the synthesis of thermodynamically viable pathways as well as the selection of enzymes for re-engineering required for novel reaction steps. We exemplify the utility of the platform to identify novel pathways for hydroxytyrosol synthesis, which are shorter than the known pathways and require reduced cofactor usage. In summary, novoStoic2.0 aims to streamline the process of pathway design contributing to the development of sustainable biotechnological solutions. 
    more » « less
    Free, publicly-accessible full text available August 6, 2026